Le calcul des pourcentages est une tâche courante qui peut être délicate. Que vous ayez besoin de trouver le pourcentage d'un nombre par rapport à un autre ou de déterminer combien coûte un produit par rapport aux autres, les pourcentages sont votre meilleur pari. Leurs propriétés les rendent idéales pour les problèmes logiques : soit la réponse est dans une plage acceptable, soit elle ne l'est pas.
Il est également facile de travailler avec eux numériquement. Cela signifie que si vous connaissez le nombre d'éléments dont vous voulez connaître le pourcentage, il devrait être facile de trouver une réponse. Pour vous aider, voici quatre conseils simples qui vous aideront à calculer les pourcentages plus efficacement et plus précisément à l'avenir :
Comprendre les propriétés des pourcentages
Un pourcentage est la valeur d'une quantité exprimée sous la forme d'un rapport de 100 %. Il s'agit d'un outil très utile qui peut être utilisé pour savoir combien d'articles se trouvent dans un groupe d'articles ou combien vaut un article. Par exemple, si un objet est composé à 75 % de bois et à 25 % de plastique, qu'est-ce que cela signifie ? La réponse est qu'il s'agit d'un objet mixte composé de deux types de matériaux : le bois et le plastique. Voici un autre exemple : si le coût d'un article est de 0,50 € et le prix d'un autre article est de 0,75 €, quel est le coût du deuxième article ? La réponse est que c'est 50% du coût du premier article.
Gardez un total cumulé
Lors du calcul des pourcentages, il est important de garder un total cumulé. Cela vous tiendra au courant des montants en jeu. Si vous finissez par calculer des pourcentages d'un nombre différent, vous pouvez le simplifier. Cependant, si vous oubliez d'enregistrer le total, vous risquez d'obtenir des résultats incorrects. Par exemple, si vous vouliez trouver le pourcentage d'un groupe d'élèves ayant des notes de 85 %, vous commenceriez par trouver combien d'élèves de ce groupe ont des notes de 85 %. Ensuite, vous additionnerez les pourcentages de tous les élèves dont les notes se situent dans cette fourchette.
La somme est reine
Lors du calcul des pourcentages, il est important de garder à l'esprit que les chiffres avec lesquels vous travaillez doivent totaliser 100 %. Cela garantit que le pourcentage est calculé correctement. Par exemple, si vous souhaitez trouver le pourcentage d'un élément dans un autre, vous devez ajouter le pourcentage du premier élément et le pourcentage du deuxième élément. Dans cet exemple, la somme des pourcentages serait de 12. Il s'agit du pourcentage des deux objets combinés.
N'oubliez pas d'arrondir
Lorsque vous calculez des pourcentages, n'oubliez pas d'arrondir au nombre entier supérieur. Cela aidera à éviter les erreurs d'arrondi qui pourraient conduire à des résultats incorrects. Par exemple, si vous vouliez trouver le pourcentage d'un groupe d'élèves ayant des notes de 85 %, vous commenceriez par trouver combien d'élèves de ce groupe ont des notes de 85 %. Ensuite, vous additionnez les pourcentages de tous les élèves dont les notes se situent dans cette fourchette. La réponse est que c'est 15 %. Cependant, puisque vous avez arrondi, vous constaterez en fait que ce pourcentage est de 16,67 %.